Numerical investigation of interfacial transport resistance due to water droplets in proton exchange membrane fuel cell air channels

نویسندگان

  • Mustafa Koz
  • Satish G. Kandlikar
چکیده

Oxygen transport resistance at the air flow channel and gas diffusion layer (GDL) interface is needed in modelling the performance of a proton exchange membrane fuel cell (PEMFC). This resistance is expressed through the non-dimensional Sherwood number (Sh). The effect of the presence of a droplet on Sh is studied numerically in an isolated air flow channel using a commercially available package, COMSOL Multiphysics . A droplet is represented as a solid obstruction placed on the GDLechannel interface and centred along the channel width. The effect of a single droplet is first studied for a range of superficial mean air velocities and droplet sizes. Secondly, the effect of droplet spacing on Sh is studied through simulations of two consecutive droplets. Lastly, multiple droplets in a row are studied as a more representative case of a PEMFC air flow channel. The results show that the droplets significantly increase Sh above the fully developed value in the wake region. This enhancement increases with the number of droplets, droplet size, and superficial mean air velocity. Moreover, the analogy between mass and heat transfer is investigated by comparing Sh to the equivalent Nusselt number. 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution

A three-dimensional computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both gas distribution flow channels and Membrane Electrode Assembly (MEA) is developed. A set of conservation equation is numerically solved by developing a CFD code based on the finite volume technique and SIMPLE algorithm. In this research, some parameters like oxygen consumption, water...

متن کامل

Three Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell

A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...

متن کامل

Numerical Study of Curved-Shape Channel Effect on Performance and Distribution of Species in a Proton-Exchange Membrane Fuel Cell: Novel Structure

In this paper, a three-dimensional, single-phase proton-exchange membrane fuel cell (PEMFC) is studied numerically. Finite volume method was used for solving the governing equations and, consequently, the numerical results were validated by comparing them with experimental data, which showed good agreement. The main objective of this work is to investigate the effect of a novel gas channel shap...

متن کامل

Enhancement of the Cooling System Performance of the Proton-exchange Membrane Fuel Cell By Baffle-restricted Coolant Flow Channels

The performance of proton-exchange membrane fuel cell cooling system using coolant flow channels enhanced with baffles was numerically investigated. To do this, the maximum temperature of the cooling plate, temperature uniformity and also pressure drop along the flow channels were compared for different cases associated with number of baffles and their dimensions inside the channels. The govern...

متن کامل

The Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell

The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013